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Modern X-ray optics is able to produce very tightly focused beams. The size of

these focused spots is comparable to the scale of large molecules and therefore

to the lattice spacing of crystals of these molecules. In this case, the phase of the

illuminating beam may vary on the scale of the lattice and conventional

diffraction theory needs to be modified. In this paper, coherent diffraction by

non-planar beams is considered and it is shown that it is possible to uniquely

recover the phase of the diffraction pattern.

1. Introduction

X-ray free-electron lasers are currently the subject of

considerable research and development. The applications of

these devices are numerous but one of the primary aims is the

development of techniques able to probe biomolecular

structure using very small crystals, clusters of molecules or

even single molecules (Neutze et al., 2000). The molecular

structure will be determined from the diffraction patterns

produced when molecules pass through the beam.

It has been shown that the diffraction pattern produced by a

finite object specifies the object almost uniquely, with there

being negligible likelihood of an incorrect structure precisely

reproducing the diffraction pattern (Bates, 1982). Current

ideas require that the diffracting structure be recovered by

iterating between real space and reciprocal space, imposing

the measured amplitude in reciprocal space and the known

support (spatial extent) of the object in real space (Fienup,

1982) until a consistent solution is found. If the fit to the

measurements is sufficiently good, then the uniqueness results

quoted above (Bates, 1982) can be invoked to conclude that

the correct solution has been found. These methods have been

experimentally demonstrated for simple objects (Miao et al.,

1999; Robinson et al., 2001; Marchesini et al., 2003) and

plausible recoveries have been demonstrated for complex

biological objects (Miao et al., 2003). Objective criteria that

would establish the reliability of the solution have, however,

yet to be found (Elser, 2003) and it is our experience that, if

the object has complex interior structure, the object shape will

be properly recovered but the interior structure can be

unreliable.

In recent years, phase measurement methods have been

developed and implemented (Nugent et al., 1996; Cloetens et

al., 1996) that use the fact that phase information is carried in

the way in which the intensity varies on propagation; these can

be termed propagation-based methods. One method that has

found wide application is based on a form of the conservation

of energy condition known as the transport of intensity

equation (Teague, 1983), the solution of which is unique in

many circumstances (Gureyev et al., 1995). Other forms of

propagation-based phase recovery are based on ideas from

electron microscopy using through-focal series of images

(Coene et al., 1992). The uniqueness of the phase recovery for

the through-focal-series method is an open question but

simulations and experiments suggest that the results are

generally reliable. Propagation-based methods are applied

for real-space phase recovery, such as for optical- (Barty

et al., 1998) or electron-microscope images (Bajt et al., 2000),

and inherently require that the wavefield contain some

curvature.

Prima facie, it would appear that propagation-based

methods cannot be applied generally in the context of

diffraction experiments in which wavefront curvature is

negligible. Modern X-ray optics is progressing very quickly,

with the availability of ever increasing amounts of coherent

flux and the development of optical elements able to provide

excellent spatial resolution. In parallel, modern structural

biology is seeking to solve structures with very large unit cells

of the order of tens of nanometres, many with a scale

comparable to the focal size of a state-of-the-art X-ray optic.

The purpose of the present paper is to consider further

whether the convergence of these distance scales allows some

new opportunities in diffraction physics. The ability to create

and control the phase curvature over small scales offers

diffraction physics a new degree of freedom that may be

exploited in structural determination (Nugent et al., 2003) and

may enable stronger convergence and unique structural

determination. In this context, we find that the ideas of

propagation-based phase retrieval acquire a natural place in

far-field diffraction problems.



2. Overview of methods to retrieve a real-space object
from diffraction data

The non-crystallographic phase problem is concerned with the

recovery of structural information diffracted by a non-periodic

object that is known to be limited in spatial extent. Theoretical

descriptions implicitly assume that the incident wave is planar,

and that the diffracted intensity is measured in the far-field.

The problem of structural recovery is therefore posed in terms

of finding the phase of a Fourier transform from its power

spectrum.

A number of iterative projection methods based on

refinements of the Gerchberg–Saxton algorithm (Gerchberg

& Saxton, 1972) have been devised. Discrete Fourier trans-

formations are performed between real-space representations

of the object, f ðrÞ, and its inverse-space representation, FðkÞ,

subject to constraints on the support of f ðrÞ and on the

magnitude of FðkÞ, which is fixed at FðkÞ ¼ ½GðkÞ�1=2 using the

diffraction intensity data, GðkÞ. Subsidiary constraints, such as

the positivity of f ðrÞ, or its external shape, may be imposed

provided that one samples FðkÞ at twice the Nyquist frequency

of the object, as discussed by Bates (1982). This is termed

oversampling and represents a formal bound on the minimal

sampling rate. In practice, a smaller effective oversampling

rate combined with some additional a priori information is

often sufficient to secure a reliable reconstruction of an object

by iterative inversion of diffraction data (Miao et al., 1998).

These iterative projection algorithms differ mainly in proce-

dural details relating to the determination of f ðrÞ and the

phase of FðkÞ, and the imposition of subsidiary constraints.

Methods now in common usage include the ‘shrink-wrapping’

of object shape information (Marchesini et al., 2003), ‘charge-

flipping’ object positivity constraints in crystallographic

reconstructions (Oszlányi & Süto��, 2004) and superposition

electron-density models (Elser, 2003). Many of these existing

methods may be defined within a general projection formu-

lation (Elser, 2003) in which the well known Gerchberg–

Saxton and hybrid input–output algorithms arise as special

cases.

In the determination of f ðrÞ from GðkÞ, the main practical

issues are the usually slow rate of convergence of the iterative

projection algorithms, the possible stagnation of the iterative

process and the robustness of the algorithms with respect to

noise. A substantial literature exists that examines the relative

performance of these algorithms under a range of circum-

stances (Fienup, 1982, 1993; Marchesini, 2004), indicating that

the form of the internal features of f ðrÞ has a significant

influence on the design and success of the method. A guiding

principle is that maximal use should be made of known

information about f ðrÞ in an attempt to reduce the number of

plausible structures that are consistent with the diffraction

data. This information may include some estimate of the size

of the object, whether the object is simply connected, real or

complex, or constrained in its amplitude or phase structure in

some other way.

The augmentation of the known information about an

object to enhance its image is a very well established strategy

in colour photography. Maxwell demonstrated in the very

earliest successful experiments in this field in 1861 that a

colour image may be obtained by superimposing three

monochrome images of an object, each taken separately

through an appropriate filter. The reconstruction algorithm in

this case simply superimposes these images by projection

through matching coloured filters. In an earlier article (Nugent

et al., 2003), an algorithm was described that contains an echo

of Maxwell’s colour photography; three separate sets of

diffraction data are obtained by varying the magnitude and

direction of the cylindrical curvature of the radiation incident

on the sample. A detailed specification of FðkÞ is obtained by

processing these data using iterative reconstruction tech-

niques to find the unique f ðrÞ consistent with all three sets.

Finally we note that all far-field single-intensity plane

algorithms lose some information about f ðrÞ. If we obtain a

reconstruction of f ðrÞ that correctly generates GðkÞ using any

phase-retrieval algorithm, then f ðrþ r0Þ, f ðrÞ expði#0Þ and

f �ð�rÞ satisfy the same equations for a given set GðkÞ, where r0

is an arbitrary uniform displacement and #0 is a constant

phase shift; the desired solutions are invariant under uniform

translation and spatial inversion, and contain an indetermi-

nant absolute phase. These correspond to the ‘trivial cases’

discussed by Bates (1982).

A further potential uncertainty exists in the case of objects

that belong to the class of homometric structures. Two isolated

object distributions, f ðrÞ and gðrÞ, may be convolved together

to form a third object, hðrÞ, where

hðrÞ ¼ f ðrÞ � gðrÞ: ð1Þ

If we further require that gðrÞ 6¼ g�ð�rÞ, then we can form a

different function

h0ðrÞ ¼ f ðrÞ � g�ð�rÞ: ð2Þ

The diffraction patterns of the objects hðrÞ and h0ðrÞ are clearly

identical and cannot be distinguished using oversampling

methods. In this paper, we demonstrate that the breaking of

symmetry that accompanies the use of astigmatic diffraction

techniques enables reconstruction algorithms to distinguish

between all of the above-mentioned ambiguities.

3. Focused beams and X-ray optics

Historically, X-ray diffraction theory has been based on an

assumption that the incident field is planar, where we here

define planar as meaning that the phase distortion over a unit

cell is negligible. However, modern crystallography is

concerned with structures with unit cells that are increasing in

size and, simultaneously, X-ray sources and optics have

improved to the point where a tightly focused X-ray beam has

a dimension comparable to the size of a large unit cell of a

biomolecular crystal. It is therefore timely to re-visit diffrac-

tion with this observation in mind. We here consider the phase

curvature in the vicinity of a focal spot.

Consider a sample illuminated by, for example, a zone plate.

In the case of a perfect zone plate illuminated with perfectly

coherent light, the sample will be illuminated with a diffrac-
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tion limited spot. The phase distribution at the focus is flat but

rapidly acquires curvature away from the focus, maximizing at

the so-called Rayleigh distance (Saleh & Teich, 1991), and

then reducing again to zero curvature in the far-field. To

quantify this, let us consider Gaussian optics. Standard results

tell us that a converging beam with 1=e2 waist w0 has a

minimum radius of curvature given by R ¼ 2�w2
0=�. A

maximum phase deviation from planar of �� ¼ 2�p is

therefore obtained with a Gaussian beam waist of

w0 ¼ dobj=4ð�pÞ1=2. In the case of �� ’ 1=8 (i.e. p ¼ 1=16�),

the required spot size is w0 ’ dobj. That is, when the focal spot

is comparable in size to the size of the object (or the unit cell in

the crystal), the wavefront curvature over the object will be

significant when it is placed at the Rayleigh distance.

Modern zone-plate technology combined with third-

generation synchrotron sources can deliver focal-spot sizes of

around 100 nm for harder X-rays (di Fabrizio et al., 1999) and

30 nm or better (Kipp et al., 2001) for softer X-rays, which

suggests that it should be possible to introduce significant

phase curvature for crystal structures with a unit cell with a

size greater than 30 nm using already existing technology. This

brings the method into the range of moderate-sized protein

crystals. It is to be anticipated that 10 nm will be achieved in

the foreseeable future, although it has been claimed that the

technology may go no further for rather fundamental reasons

(Bergemann et al., 2003).

4. Unique phase recovery using coherent astigmatic
diffraction

4.1. General theory

In an earlier article (Nugent et al., 2003), the effect of a

small phase change, �ðrÞ, was considered for an otherwise

conventional diffraction experiment, where r is a specified

position in a two-dimensional plane perpendicular to the

direction of propagation of the incident beam. It was further

assumed that the sample is sufficiently thin that the effective

perturbing potential can be regarded as a function of r in

the sample plane. This requires that the sample width, �z,

in the direction of propagation, z, satisfies the condition

�z� 1=kmax, where kmax is the maximum measured wave-

number in the diffraction data.

In the case of a parabolic phase change, �ðrÞ ¼ k0r2=2R,

where k0 ¼ 2�=� is the wavenumber of the incident radiation,

� is the corresponding wavelength and R is the characteristic

scale of the phase change. The illuminating wave may be

written in the form

 inc ’ 1þ ik0

r2

2R

� �
expð�ik0zÞ: ð3Þ

The leading-order perturbation correction to  inc is second-

order in r, enabling the transformation of the equation for the

effect of the perturbation on the diffracted intensity to a form

that depends on the second derivative in the reciprocal-space

variable, k.

�If ðkÞ ¼
1

k3
0R
rrr � fIf ðkÞrrr�f ðkÞg; ð4Þ

where �If ðkÞ ¼ If ðkÞ � I 0ðkÞ, If ðkÞ represents the diffracted

intensity data in the absence of the perturbation, I 0f ðkÞ is the

corresponding data in the presence of the perturbation and

�f ðkÞ contains the diffracted phase information. The structure

of equation (4) is formally identical to the transport of

intensity equation that is used in real-space phase recovery. In

this case, however, the fields are described in terms of the

reciprocal-space variable, k, and there is no requirement to

assume the validity of the paraxial condition.

When posed as a Neuman problem, equation (4) has a

unique solution given a knowledge of the boundary condition

n̂n � rrr�f ¼ g, where n̂n � rrr�f is the phase gradient normal to

the boundary of the simply connected bounded two-dimen-

sional solution domain. This uniqueness condition assumes,

however, that If ðkÞ> 0, which is not fulfilled for most

diffracted fields, and is clearly violated whenever phase

discontinuities generate zero-valued points in the intensity. In

practice, equation (4) would rarely be associated with a unique

solution to the phase-retrieval problem. Nonetheless, as will

be seen, it can lead to satisfactory solutions in practice.

4.2. Astigmatic diffraction and uniqueness

The indeterminacies in the phase arise owing to symmetries

within the structure of its discontinuities, which one expects to

be broken by the external introduction of asymmetry in the

optical system. This may be achieved by introducing a

cylindrical rather than a spherical wave, corresponding to a

phase perturbation �ðrÞ ¼ k0q2=2R, where q ¼ x or q ¼ y

denotes the direction of the introduced cylindrical astigma-

tism.

An argument analogous to that for a spherical perturbation

leads to the expression

�Iq
f ðkÞ ¼

1

k3
0R

@

@kq

If ðkÞ
@

@kq

�f ðkÞ

� �
; ð5Þ

where the superscript label q in �Iq
f indicates that �If ðkÞ has

been obtained using curvature in the q direction. In an earlier

paper on this subject (Nugent et al., 2003), the role of the

boundary conditions was considered in the context of an

object of known finite extent. In this article, we are also

concerned with phase recovery for objects of infinite extent

illuminated by a focused (or, more generally, finite energy)

beam and so we will explore this issue a little further.

In the present case, the Poynting vector in the far field,

SðkÞ ¼ ð1=k2
0ÞIf ðkÞrrr�ðkÞ, is considered to be a two-dimen-

sional function of k. In the presence of cylindrical phase

curvature, SqðkÞ, the q component of SðkÞ, is defined with

respect to the available information by the differential equa-

tion

@SqðkÞ

@kq

����
k �qq

¼ k0R�Iq
f ðkÞ

����
k �qq

; ð6Þ

where �qq denotes the direction perpendicular to q. For illumi-

nation by a localized beam, If ðkÞ ! 0 and SqðkÞjs �qq
! 0 in the
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limit kq !�1, which fixes the boundary condition on the

solution of the differential equation for SqðkÞjk �qq
. A unique

solution to this equation is thus obtained.

If we consider the function �If ðkÞ, however, we note that,

for any fixed value of k �qq, the direct integration of equation (6)

using, for example, finite difference techniques is likely to

encounter a discontinuity in the derivative of �Iq
f ðkÞ owing to

the presence of phase vortices. The functions SqðkÞjk �qq
are

consequently only piecewise continuous, and it would be

necessary to determine accurately the Fourier space positions

of these vortices in any direct numerical attempt to obtain

them by solution of equation (6). Such a direct solution is

nonetheless possible, at least in principle.

Following Nugent et al. (2003), it is easily shown that the

Poynting vector uniquely specifies the incident field to within a

constant phase term. Suppose that two fields have the same

Poynting vector but different phases, so that

IðkÞrrr�1ðkÞ ¼ IðkÞrrr�2ðkÞ: ð7Þ

For non-zero intensity, one may write

IðkÞrrr½�1ðkÞ ��2ðkÞ� ¼ 0; ð8Þ

for which the solution is

½�1ðkÞ ��2ðkÞ� ¼ constant: ð9Þ

A constant phase difference has no physical meaning and the

two fields are consequently identical.

We therefore conclude that a measurement of the far-field

diffraction pattern combined with far-field diffraction patterns

obtained with orthogonal cylindrically curved waves are

sufficient to determine uniquely the phase of the diffraction

pattern. We refer to the method as astigmatic diffraction.

5. Periodic structures

The derivation in the previous section assumes that all the

derivatives of If ðkÞ are defined in order to recover equation

(5). This is acceptable when the diffracting object is finite in

extent and so its diffracted field is known to be analytic.

However, the phase problem for most of crystallography

concerns essentially infinite periodic structures and this is now

the problem that we consider. We envisage that the principal

application of this method will be to small crystals and so, for

simplicity, we will retain the Born approximation.

Consider a structure described by

�ðrÞ ¼
P
G

nG exp ðiG � rÞ ð10Þ

illuminated with an incident wave  inc ¼ expð�ik0 � rÞ. The

far-field intensity distribution is given by

IðkÞ /
���P

G

nG�ðk� k0 þGÞ
���2; ð11Þ

which gives the familiar Bragg diffraction condition

k� k0 ¼ �G: ð12Þ

This is the basis of conventional diffraction theory. Now

consider the crystal illuminated with a field containing the

general variation, exp½�ðrÞ�, so that  inc ¼

expð�ik0 � rÞ exp½�ðrÞ�, where �ðrÞ may contain information

about spatial variations in both intensity and phase. In this

case, the scattered wave,  scat, is given by

 scat ¼
P
G

nG exp ½iðG� k0Þ � rþ �ðrÞ� ð13Þ

and the far-field intensity is of the phase-modified form

IðkÞ ’
���P

G

nG

R
exp½iðk� k0 þGÞ � rþ �ðrÞ� dr

���2: ð14Þ

In practice, we introduce phase and intensity variation over

the sample using curved wavefronts and a sufficiently general

representation of �ðrÞ may be written in the form

�ðrÞ ¼ ��xx2
� �yy2

¼ �xð�x; xÞ þ �yð�y; yÞ; ð15Þ

where x and y are distances measured perpendicular to the

beam axis in the plane of the sample. The parameters �x and

�y are, in general, complex; the real part of �q for q 2 fx; yg

describes the intensity variation in a Gaussian approximation

if <ð�qÞ> 0, while =ð�qÞ defines the phase variation of a

spherical wave in a plane perpendicular to the direction of

propagation. The phase variation, in particular, typically

depends on the radius of curvature of the wavefront, R, and

the wavenumber of the incident radiation, k0, while the sign of

=ð�qÞ is determined by whether the target plane is upstream or

downstream of the focal plane. Note that in contrast to the

development in the previous section there is no longer a

requirement in what follows that �ðrÞ be in any sense ‘small’.

For notational convenience, we define

ðk� k0 þGÞ � r ¼ wxðGx; ux; ux;0Þxþ wyðGy; uy; uy;0Þy: ð16Þ

We may then write equation (14) as

IðkÞ ’
���P

G

nGIxðwx; �xÞIyðwy; �yÞ

���; ð17Þ

where it is to be understood that wx ¼ wxðGx; ux; ux;0Þ,

wy ¼ wyðGy; uy; uy;0Þ and

Iqðwq; �qÞ ¼
R1
�1

expðiwqq� �qq2Þ dq ð18Þ

for q ¼ fx; yg. These integrals may be evaluated using the

standard result (Abramowitz & Stegun, 1970; Sneddon, 1951)

Iqðwq; �qÞ ¼
�

�q

� �1=2

exp
�w2

q

4�q

� �
; ð19Þ

which is valid for <ð�qÞ> 0. In order to examine the analyti-

city of IðkÞ in the neighbourhood of wq ¼ 0 and �q ¼ 0, this

restriction on �q is imposed by writing �q ¼ "q � i�q, where "q

is real and positive.

In order to recover conventional diffraction theory and the

Bragg condition, we set �q ¼ 0, in which case we obtain

Iðwq; 0Þ ¼ lim
"!0þ

�

"q

� �1=2

exp �
u2

q

4"q

� �
¼ 2��ðwqÞ; ð20Þ

which regenerates the result embodied in equation (11) for

each component, wq.
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In practice, the use of a Gaussian beam profile ensures that

"q satisfies the conditions required by equation (19), since the

Gaussian intensity profile corresponds to a real positive value

of "q. The diffraction integrals, and hence the diffracted

intensity, equation (17), are analytic in the direction of the

applied wavefront curvature, excluding at the parametric

Bragg limit wq ! 0. Subject to the assumptions inherent in

the development in equation (4), and especially the weak

curvature assumption implicit in equation (4), one concludes

that the phase recovery yields a unique result even when the

diffracting structure is infinite and periodic.

It can further be seen that non-planar incident fields will

diffract off reciprocal-lattice vectors that would not otherwise

be detected without rotating the crystal and that the curved

wavefront will act to spread the diffracting orders out over the

detector. If the diffracted spots are sufficiently diffuse, then

they will begin to overlap and interference fringes form. The

phase of the interference fringes will yield information about

the relative phases of the diffracted orders which will itself

yield additional structural information. In this limit, the

method is related to the ptychographic approach that is used

in electron microscopy (Hegerl & Hoppe, 1970; Nellist &

Rodenburg, 1998).

6. Solving for the phase

Equation (4) has a formal structure identical to the transport

of intensity equation. This equation has been applied exten-

sively in quantitative phase imaging (Bajt et al., 2000).

Notwithstanding the formal mathematical difficulties asso-

ciated with the presence of phase discontinuities, this method

is known to provide a robust retrieval algorithm. In this

section, we explore the application of equation (4) to far-field

diffraction studies.

The astigmatic methods discussed in x4.2 offer the possi-

bility of a formally unique solution. The associated symmetry

breaking and increased information available to the algorithm

suggest that improved convergence characteristics may be

obtained. The two approaches are critically compared in this

section.

6.1. Algorithm for phase recovery

Although it would be possible to directly integrate a

Poynting vector field to recover the phase distribution, a

diffracted field will typically contain many vortices and so this

will, in general, not be practical. We therefore developed an

iterative scheme to recover the phase. The algorithm is similar

in spirit to other iterative methods and can be reduced to the

standard Gerchberg–Saxton scheme, as indicated below. To

commence the iteration, a phase guess is applied to an initial

set of diffraction data. An inverse Fourier transform gives the

current object plane solution where a support constraint may

be applied. Any curvature used to obtain the diffraction data

is then removed and the curvature corresponding to the next

set of diffraction data is applied. A Fourier transform then

gives the current diffraction plane solution where the actual

diffraction intensity is applied. The cycle is repeated through

all curvature diffraction data sets and a test for convergence is

applied before repeating the iteration. The conventional

Gerchberg–Saxton algorithm corresponds to N ¼ 1 and

vanishing effective curvature. When all curvatures are

spherical then the algorithm is the iterative form for solution

of equation (4). When one or more sets of orthogonal

cylindrical curvatures are used then the algorithm is the

iterative form for the solution of equation (5).

In order to assess convergence, we define a quality of fit

parameter against the correct solution, determined over the

support,

R ¼

P
ij jjd

recon
ij j � dtruth

ij jjP
ij jjd

recon
ij j þ dtruth

ij jj
; ð21Þ

where drecon
ij is the ijth pixel of the reconstruction and dtruth

ij is

the corresponding correct value. For the model systems

adopted here, this definition of R allows us to construct a

measure of the quality of the reconstructed target gauged

against the known control of the function that has been used

to generate the simulated diffraction data. In practical appli-

cations, however, one would would need to devise a quality

metric that is based solely on comparison of the experimental

and reconstructed diffraction data, since the details of dtruth

will, in general, be unknown.
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Figure 1
General algorithm for iterative phase reconstruction, which is described
in the text in x6.1. When all curvatures are spherical then the algorithm is
the iterative form for solution of equation (4). When one or more sets of
orthogonal cylindrical curvatures are used then the algorithm is the
iterative form for the solution of equation (5).



6.2. Algorithm comparison

In order to assess the performance of some of the different

variations possible for the iterative algorithm shown in Fig. 1,

we simulated the diffraction pattern of an artificial molecule

made of 40 randomly positioned C atoms within a 75 nm

square window. The object distribution is shown in Fig. 2.

Curved diffraction data were generated with a maximum

curvature corresponding to an approximate phase shift of � at

the edge of the object. Astigmatic and spherical diffraction

data sets were generated. Multiple curved data sets were also

generated with the curvature reducing from � for the first data

set to �=5 for the fifth data set in equal steps. Finally, we also

investigated the effect on the performance of the algorithm

when a constraint was not used at all. This is, in principle,

possible where multiple data sets are used as the additional

data forces a self-consistent solution.

Plots showing the evolution of the fit quality parameter, R,

of equation (21) as a function of iteration number using

several variations on the algorithm are shown in Fig. 3. The

curves from left to right correspond to the following cases: five

sets of x and y cylindrical curvature data with support

constraint; five sets of x and y cylindrical curvature data with

no constraint; one set of x and y cylindrical curvature data with

support constraint; five sets of spherical curvature with

support constraint; and five sets of spherical curvature with no

constraint. After 400 iterations, there is no appreciable

convergence for the Gerchberg–Saxton method and so the

corresponding plot is not shown.

In all cases shown, the retrieved object structure was

indistinguishable from that shown in Fig. 2. It can be seen for

the object examined here that the support constraint offers

only a slight improvement in the speed of convergence to the

correct solution. In early iterations, the application of the

support constraint may even reduce the apparent convergence

rate. A direct comparison of initial convergence rate with and

without the support constraint must be heavily qualified,

however, since the starting guess for the target object is

different in the two cases, and the algorithms follow inde-

pendent and unrelated routes towards convergence. One does

observe, however, that the asymptotic convergence is more

rapid if the support constraint is applied, compared with the

case in which it is absent. The improvement obtained by

incorporating multiple diffraction data sets into the algorithm

is clear. In practice, many data sets will also serve as a method

of reducing experimental error. Finally, we note the clear

advantage obtained in using astigmatic diffraction data sets

compared with spherical. We conjecture that the use of

astigmatic diffraction data sets introduces further information

into the iterative system, effectively doubling the number of

multiple diffraction data sets available using spherical data

alone. In the following subsection, we consider objects that

cannot be determined using planar or spherical incident fields.

6.3. Vortex phase objects

Astigmatic diffraction was directly simulated for a vortex

optical field of the form

 ðrÞ ¼ exp ½�ðr=r0Þ
2� þ im� r 6¼ 0

0 r ¼ 0

�
ð22Þ

with r ¼ r cosð�Þîiþ r sinð�Þĵj, m ¼ �1, r 	 0 and 0 
 � < 2�.

The Fourier transform was calculated and it was confirmed

that the diffracted intensity was independent of the sign of the

topological charge, m. This field therefore has a genuine phase

sign ambiguity that cannot, in principle, be resolved using the

oversampling method. Small (maximum phase excursion of

much less than �) orthogonal cylindrical phase curvatures

were introduced and equation (5) was applied to recover the

Poynting vector for the field. The result is shown in Fig. 4 and

it can be seen that the vortex structure is accurately recovered

and the phase gradient circulates around the phase disconti-

nuity at the intensity zero. The reconstructed topological

charge was confirmed to change sign with a change in the

initial field. The phase recovery for this structure is shown in

Fig. 5.

We also performed the reconstruction using the Gerchberg–

Saxton method and were sometimes able to obtain solutions

that were correct. However, sometimes the solution was

reversed in sign and sometimes the iteration failed to

converge, thus confirming the non-uniqueness of solutions

obtained by non-astigmatic methods.
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Figure 2
Test object used to investigate the algorithm described in Fig. 1. The
recovered structure is visually indistinguishable from the original
structure of the test object shown here.

Figure 3
Plots showing the evolution of the quality of fit parameter of equation
(21) as a function of iteration number using the algorithm described in
Fig. 1. The curves from left to right at R ¼ 10�6 correspond to the
following cases: five sets of x and y cylindrical curvature data with support
constraint; five sets of x and y cylindrical curvature data with no
constraint; one set of x and y cylindrical curvature data with support
constraint; five sets of spherical curvature with support constraint; and
five sets of spherical curvature with no constraint.



6.4. Homometric object

As indicated in x2, a reduction of symmetry in image

retrieval algorithms brings with it the ability to distinguish

between nearly identical structures or between the elements

of homometric classes of structures that are strictly indis-

tinguishable using uniform plane-wave illumination.

Fig. 6 shows the reconstruction of two objects that are

homometric. The reconstructions are indistinguishable from

the original objects. This example demonstrates that objects of

this type are reconstructed correctly to within the numerical

accuracy of the computer using astigmatic diffraction data.

6.5. Infinite periodic objects

A previous paper (Nugent et al., 2003) considered diffrac-

tion by an isolated object with compact support, and these

results have been extended here. It has been shown that

unique reconstruction of infinite periodic samples should also

be possible. In order to test the reconstruction, homometric

periodic structures were calculated (Fig. 7). The structures

were assumed to be illuminated with a curved beam to ensure

that the diffracted field had well defined spatial derivatives.

The data were then entered into the iterative program. It was

found that the temporary application of a finite support was

helpful to initiate convergence, but once this had begun the

support was removed and the algorithm converged on the

correct result very smoothly. The finite support was chosen to

encompass several unit cells, although the precise selection of

this region is not otherwise critical.

6.6. Astigmatic diffraction

The astigmatic diffraction method introduces additional

information into the iterative algorithm. The use of astigmatic

information creates the ability to generate unique solutions.

While these are referred to as ‘trivial’ cases by Bates, we see

from xx6.3 and 6.4 that they can, nonetheless, be intrinsically

interesting structures. Moreover, the use of this method leads

to the intriguing possibility of solving the structure for peri-

odic objects. The fact that two or more astigmatic diffraction

data sets must be used also means that there is more infor-

mation available to the algorithm than for the conventional

Gerchberg–Saxton or spherical curvature methods. Accord-

ingly, not only does astigmatic diffraction offer the security of

a unique solution, it gets to that solution faster than other

methods.

7. Practical considerations

This paper has argued that the illumination of a sample using a

beam containing wavefront curvature can be used to deter-

mine uniquely the diffracting structure. A central part of this

argument is that the curvature can be sufficiently well known

to allow the equations to be solved, that sufficient diffraction

can be observed and that the system position is stable enough

for multiple data sets to be reliably acquired. These are all

important experimental issues. In this section, we briefly

consider implementation approaches that might allow

multiple curvature diffraction to be applied in practice.

In this work, we have considered the illuminating of

samples using a small additional cylindrical curvature added to

a curved beam. The appropriate wavefront might be produced

by focusing the X-ray beam onto the sample using a conven-

tional zone plate and then introducing an additional weakly
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Figure 5
Recovery of the vortex phase distribution.

Figure 6
Recovered non-periodic homometric objects. These images show the
recovered structures. They are indistinguishable from the original input.

Figure 4
Poynting vector recovered from an optical vortex beam. The handedness
of the circulation was always correctly recovered.



focusing cylindrical lens. An alternative might be to rotate the

conventional zone plate about an axis orthogonal to the optic

axis so as to introduce astigmatism to the optical system and

thereby produce a cylindrically curved component. Another

possibility is to use a Kirkpatrick–Baez imaging system and

adjust the mirror angle to produce cylindrical curvature. It can

be concluded, therefore, that the introduction of appropriate

curvature is well within the capabilities of modern X-ray

optical technology.

In conventional diffraction physics, the location of the

sample within the beam is irrelevant because, by assumption,

the incident beam is planar. This allows a great deal of latitude

in the alignment of the experimental apparatus. The essential

point of this paper is to remove the plane-wave assumption

and so this matter must be considered more deeply. Indeed,

given the proposals in the previous paragraph, it must be

acknowledged that the optical adjustments required to change

the wavefront curvature are certain to move the beam with

respect to the sample. Suppose that introducing the cylindrical

curvature moves the beam laterally a small amount. It is

simple to show that such a shift adds an additional linear phase

to the diffracted wave. In the far-field, this will correspond to a

translation of the intensity pattern. Thus, it is likely that a

simple alignment procedure will be required.

If the intensity distribution of the beam is changing signif-

icantly relative to the spatial scale of the unit cell then addi-

tional complexity will be introduced. In x3, we considered the

production of highly curved beams using focusing optics. Such

an approach will have two associated complexities. First, the

intensity distribution will have a significant spatial variation

with respect to the unit cell. Thus, corrections to this effect

would have to be explored. This does not seem to represent a

difficult correction to make, but should be the subject of

further work. Secondly, the region of the diffracting structure

being illuminated will be very small and this could result in

considerable radiation damage, or a very small diffracted

signal.

One might imagine, in the context of an X-ray free electron

laser experiment, that the molecular systems (being single

molecules, clusters or nanocrystals) might be introduced in

different parts of a focusing beam, as illustrated in Fig. 8. The

resulting diffraction patterns will then correspond to different

incident curvatures. An experiment designed along these lines

would represent only a minor increase in complexity over the

acquisition of diffraction patterns at one point in the beam.

In order to make use of the phase and intensity structure of

a beam in the reconstruction algorithm, one must be able to

characterize these features on planes illuminating the target

that are perpendicular to the propagation axis of a real beam.

The wavefield of a focused beam may, at least in principle, be

obtained by phase retrieval of its image in the detector plane

using an adaption of the Gerchberg–Saxton algorithm. In

order to characterize the illumination of a sample, this

wavefield can then be propagated a short distance from the

focal plane to the target plane in the Fresnel approximation.

Since the function describing the target object and the illu-

minating wavefield are multiplicative, any small residual error

in this step manifests itself as a slowly varying modulation of

the reconstruction of the object. This modulation introduces

only small errors in the reconstruction while preserving the

benefits of utilizing phase curvature as a means to accelerate

iterative phase retrieval that are described in the present

article.

Finally, the illuminating field will itself be highly divergent

and so the diffraction pattern will be partly superimposed

on a very bright undiffracted beam. However, the spatial

frequencies contained in the region of the undiffracted

background would correspond to a spatial scale (i.e. a reso-

lution) comparable to that of the beam size. Thus the useful

structural information will be scattered out of this beam and so

superposition on the divergent undiffracted beam should not,

at least in principle, imply a fundamental problem.

Finally, we note that the key requirement for astigmatic

diffraction would appear to be the need for waves with

complex symmetry properties. It would be interesting to

explore the application of well characterized but complex

wavefronts with, for example, a large local curvature
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Figure 8
Schematic of a possible free-electron laser experiment. Measurements
are obtained of the X-rays diffracted by molecules placed into the beam
at different curvature points. A conventional focused beam will produce
different spherical curvatures and an astigmatic beam will produce
astigmatic diffraction data.

Figure 7
Recovered homometric infinite periodic structures. These are indis-
tinguishable from the input distribution.



combined with a small overall curvature to the diffraction

problem. We speculate that such wavefronts would allow

unique phase recovery.

8. Conclusions

We have presented a discussion of the diffraction of curved

wavefronts by arbitrary samples. The diffraction model used is

rather simple and we acknowledge that it ignores many of the

complexities of a full dynamical diffraction theory. Never-

theless, we believe that the method proposed here should be

able to yield a practical approach that will allow the unique

solution of the phase problem for a broad range of diffracting

samples. We have presented simulations that have supported

our theoretical conclusions and we have found that rapid

convergence on the correct solution is invariably attained. The

simulations used are, of course, highly idealized and in x7 we

have presented a brief consideration of some of the practical

issues that would need to be considered. In summary, we

believe that the very highly shaped beams offered by modern

X-ray optics offers a hitherto unrecognized flexibility for the

acquisition of diffraction data.
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